Муниципальное автономное общеообразовательное учреждение Вторая Новосибирская гимназия

Методические разработки исследовательских работ для специализированных классов с использованием цифровых лабораторий

Новосибирск

Содержание

Анализ качества пищевых продуктов	3
Опыт №1. Процесс скисания молока	
Опыт № 2. Определение кислотности молока	
Опыт № 3. Определение кислотности хлеба	6
Опыт №4. Определение кислотности муки	9
Опыт №4. Определение свежести творога	
Анализ качества фармацевтических препаратов	13
Опыт №1. Анализ кислоты борной	13
Опыт №2. Анализ кислоты ацетилсалициловой	15
Опыт №3. Анализ кислоты аскорбиновой	16
Химия и экология	18
Опыт № 1. Анализ почвы	18
Опыт 2. Коррозия металлов	19
Опыт № 3. Определение рН (водородного показа	
питьевой неминерализованной воды, минерально	й воды,
газированных окрашенных напитков	23
Полезные источники	26

Анализ качества пищевых продуктов.

<u>Цель работы:</u> познакомиться с методами анализа качества продуктов питания и сырья для производства продуктов питания, используя возможности цифровой лаборатории.

<u>Форма работы:</u> фронтальная (демонстрационный опыт), индивидуальная работа.

<u>Оборудование и реактивы:</u> молоко, хлеб, мука, 0,1 М раствор едкого натра, 2% спиртовой раствор фенолфталеина, дистиллированная вода; конические колбы для титрования, датчик рН, цифровая лаборатория «Архимед».

Опыт №1. Процесс скисания молока

<u>Цель опыта:</u> Проследить за изменением рН молока, находящегося в термосе около 30 часов.

<u>Форма работы:</u> фронтальная (демонстрационный эксперимент), индивидуальная работа, работа в группе.

Оборудование и реактивы: термос ёмкостью 1 литр (с пробкой, позволяющей хорошо загерметизировать провод рН- метра, датчик рН, соединительный провод для датчика, молоко коровье цельное непастеризованное и молоко пастеризованное, цифровая лаборатория.

Настройка параметров измерения:

- 1) частота измерений каждую минуту;
- 2) число замеров 2000

<u>Ход работы:</u> Залейте 750 мл не пастеризованного молока комнатной температуры в термос. Погрузите в не пастеризованное молоко электрод датчика рН-метра и закройте термос крышкой так, чтобы не повредить проходящий через пробку кабель электрода. Начинайте регистрацию данных. Через 30 часов остановите регистрацию данных. Повторите опыт с пастеризованным молоком.

<u>Результаты измерений:</u> постройте график зависимости рН от времени при скисании пастеризованного и не пастеризованного молока. Проанализируйте динамику и выделите критические точки понижения рН.

Опыт № 2. Определение кислотности молока

<u>Цель опыта:</u> определить свежесть пастеризованного и не пастеризованного молока, находившегося разное время (0,5, 2, 5, 7, 15, 20 часов) при комнатной температуре (20^{0}C) , проследив за изменением pH.

Форма работы: индивидуальная (в группах).

Оборудование и реактивы: молоко пастеризованное и не пастеризованное, 0,1 М раствор гидроксида натрия, бюретка, воронка, колбы для титрованиия, мешалка, фенолфталеин, датчик рН, соединительный провод для датчика, цифровая лаборатория.

Настройка параметров измерения:

- 1) частота измерений каждую секунду;
- 2) число замеров 1000

Ход опыта: В колбу для титрования наливают 10 мл молока, 20 мл дистиллированной воды, 5 капель 2% раствора фенолфталеина. Смесь хорошо перемешивают при помощи магнитной мешалки. Затем опускают датчик рН и начинают по каплям из бюретки прибавлять 0,1 М раствор едкого натра, при включённой мешалке, до рН 8,2 (по показаниям прибора), фиксируя при этом цвет индикатора (появление розоватой окраски). Полученные данные внести в таблицу 1.

Опыт повторяют 3 раза.

Таблица 1 - Кислотность молока

Образец молока	Объём	Объём,	Среднее	Кислотность
	молока,	прилитого	значение	молока, град
	МЛ	раствора	объёма,	
		NaOH, мл	прилитого	
			раствора	
			NaOH, мл	
Пастеризованное молоко				
Пастеризованное молоко,				
образец 1				
Пастеризованное молоко,				
образец 2				
Пастеризованное молоко,				
образец 3				
Не пастеризованное молоко				
Не пастеризованное молоко,				
образец 1				
Не пастеризованное молоко,				
образец 2				
Не пастеризованное молоко,				
образец 3				
			<u> </u>	

<u>Результаты измерений:</u> вычислить кислотность пастеризованного и не пастеризованного молока в условных градусах Тёрнера по формуле [19]:

Кислотность молока = $V_p(NaOH) \cdot 10$

Свежее молоко имеет 16-18 градусов кислотности по Тёрнеру. Предельная кислотность свежего молока 20 градусов.

Сделайте вывод о свежести использованного молока. Чем вызвана кислотность молока, какая кислота образуется при скисании молока? Напишите уравнения реакции образования этой кислоты и её нейтрализацию гидроксидом натрия.

Опыт № 3. Определение кислотности хлеба

<u>Цель опыта:</u> определить кислотность разных видов хлебобулочной продукции, проследив за изменением рН при титровании.

Форма работы: индивидуальная (в группах).

Оборудование и реактивы: хлебобулочная продукция (из разных сортов муки), 0,1 М раствор гидроксида натрия, бюретка, воронка, колбы для титрованиия, мешалка, фенолфталеин, датчик рН, соединительный провод для датчика, цифровая лаборатория.

Настройка параметров измерения:

- 1) частота измерений каждую секунду;
- 2) число замеров 1000

Ход опыта:

Подготовка к анализу. Образцы разрезают пополам по ширине и от одной половины отрезают кусок (ломоть) массой около 70 г, у которого срезают корки и подкорочный слой общей толщиной 1 см. Для изделий массой менее 200 г берут целые булки, с которых срезают корки слоем приблизительно 1 см. Из кусков приготовленных изделий удаляют все включения (повидло, варенье,, изюм и т.п.), затем их быстро измельчают и перемешивают.

25 г измельченного мякиша отвешивают с погрешностью до 0,05 г. Навеску помещают в сухую бутылку (типа молочной) вместимостью 500 см³, с хорошо пригнанной пробкой. Мерную колбу вместимостью 250 см³ наполняют до метки дистиллированной водой, подогретой до температуры 60 °C. Около 1/4 взятой

дистиллированной воды переливают в бутылку с хлебом, который после этого быстро растирают деревянной лопаточкой до получения однородной массы, без заметных комочков нерастертого хлеба.

К полученной смеси прибавляют из мерной колбы всю оставшуюся дистиллированную воду. Бутылку закрывают пробкой и энергично встряхивают в течение 3 мин. После встряхивания дают смеси отстояться в течение 1 мин и отстоявшийся жидкий слой осторожно сливают в сухой стакан через чистое сито или марлю.

Из стакана отбирают пипеткой по 50 см³ раствора в три конические колбы вместимостью по 100-150 см³ каждая. Затем опускают датчик рН и начинают по каплям из бюретки прибавлять 0,1 М раствор едкого натра, при включённой мешалке, до рН 8,2 (по показаниям прибора), фиксируя при этом цвет индикатора (появление розоватой окраски). Полученные данные занести в таблицу 2. Опыт повторяют 3 раза.

Таблица 2 - Кислотность хлеба

Образец хлеба	Объём хлебной вытяжки, мл	Объём, прилитого раствора NaOH, мл	Среднее значение объёма, прилитого раствора NaOH, мл	Кислотность хлеба, град
Хлеб пшеничный из сорт	овой муки			
Образец 1				
Образец 2				
Образец 3				
Хлеб пшеничный, пригот	овленном на	а жидких дрог	жжах	,
Образец 1				

Образец 2					
Образец 3					
Хлеб пшеничный обойны	ій				
Образец 1					
Образец 2					
Образец 3					
Хлеб ржаной из обойной	муки				
Образец 1					
Образец 2					
Образец 3					
Хлеб ржаной из обдирної	й муки				
Образец 1					
Образец 2					
Образец 3					
Хлеб ржаной из сеяной муки					
Образец 1					
Образец 2					
Образец 3					
•	•		•	•	

Результаты измерений: вычислить кислотность образцов хлеба по формуле **Кислотность хлеба** = 25.50.4.V/(250.10), где V — объем 0,1 моль/дм³ раствора гидроксида натрия, см³; 1/10 — приведение 0,1 моль/дм³ раствора гидроксида натрия или гидроксида калия к 1 моль/дм³; 4 — коэффициент, приводящий к 100 г навески; 25 — масса навески испытуемого продукта, г; 250 — объем воды, взятый для извлечения кислот, см³; 50 — объем испытуемого раствора, взятый для титрования, см³.

Опыт №4. Определение кислотности муки

<u>Цель опыта:</u> определить кислотность разных сортов и видов муки, проследив за изменением рН при титровании.

Форма работы: индивидуальная (в группах).

<u>Оборудование и реактивы:</u> разные сорта и/или виды (пшеничная, ржаная, кукурузная) муки, 0,1 М раствор гидроксида натрия, бюретка, воронка, колбы для титрованиия, мешалка, фенолфталеин, датчик рН, соединительный провод для датчика, цифровая лаборатория.

Настройка параметров измерения:

- 1) частота измерений каждую секунду;
- 2) число замеров 1000

<u>Ход опыта</u>: В колбу для титрования помещают 5 г муки, затем прибавляют 40 мл воды, 5-6 капель фенолфталеина. Затем опускают датчик рН, начинают регистрацию данных и приливание (по каплям) 0,1 М раствор едкого натра при включённой мешалки до рН 8,2. Опыт повторяют 3 раза. Полученные данные занести в таблицу 3.

Таблица 3 - Кислотность муки

Образец муки	Масса муки в	Объём,	Среднее	Кислотность
	образце, г	прилитого	значение	муки, град
		раствора	объёма,	

		NaOH, мл	прилитого		
			раствора		
			NaOH, мл		
Мука пшеничная	I				
Образец 1					
Образец 2					
Образец 3					
Мука ржаная			1		
Образец 1					
Образец 2					
Образец 3					
Мука кукурузная					
Образец 1					
Образец 2					
Образец 3					

<u>Результаты измерений:</u> вычислить кислотность образцов муки по формуле:

Кислотность муки = $V (NaOH) \cdot 20 / 10$

Опыт №4. Определение свежести творога

<u>Цель опыта:</u> определить кислотность разных видов творога, проследив за изменением рН при титровании.

Форма работы: индивидуальная (в группах).

<u>Оборудование и реактивы:</u> разные виды творога, 0,1 М раствор гидроксида натрия, бюретка, воронка, колбы для титрованиия, мешалка, фенолфталеин, датчик рH, соединительный провод для датчика, цифровая лаборатория.

Настройка параметров измерения:

- 1) частота измерений каждую секунду;
- 2) число замеров 1000

Ход опыта: В колбу для титрования помещают 10 г творога (очистить от изюма и др. включений) и небольшими порциями приливают 20 мл воды, нагретой до 30-40 °C. Творог тщательно перемешивают стеклянной палочкой. Прибавляют 5 капель спиртового раствора фенолфталеина. Помещают в раствор датчик рН, начинают регистрацию данных, одновременно прибавляя 0,1 н. раствор гидроксида натрия до рН 8,2 (появления розовой окраски). Опыт повторяют 3 раза. Полученные данные занести в таблицу 4.

Таблица 4 - Кислотность творога

Образец	Масса творога	Объём,	Среднее	Кислотность		
творога	в образце, г	прилитого	значение	творога,		
•		раствора NaOH,	объёма,	град		
		МЛ	прилитого			
			раствора			
			NaOH, мл			
Образец творога 1						
	T	T	T			
1						

2						
3						
Образец творо	ога 2					
1						
2						
3						
Образец творо	Образец творога 3					
1						
2						
3						

<u>Результаты измерений:</u> вычислить кислотность образцов творога по формуле:

Кислотность творога = V (NaOH) · 20

Анализ качества фармацевтических препаратов

Опыт №1. Анализ кислоты борной

Кислота борная - H₃BO₃, в промышленности получают из борсодержащих минералов действием концентрированной серной кислотой:

$$Mg_2B_2O_5 \cdot H_2O + 2H_2SO_4 \rightarrow 2MgSO_4 + 2H_3BO_3$$

Чистая кислота борная представляет собой жирные на ощупь, бесцветные, прозрачные чешуйчатые кристаллы или мелкий белый кристаллический порошок без запаха. В холодной воде растворяется плохо, в горячей хорошо. Растворима в спирте (1:25) и медленно (1:7) в глицерине.

Применение:

- в виде 2-3% растворов для полоскания горла;
- в мазях и присыпках;
- 1-2% водные растворы в глазной практике.

борная принадлежит к очень слабым кислотам: константа диссоциации её 5,75·10⁻¹⁰. Соли, образующиеся при титровании кислоты борной щёлочью, очень сильно гидролизуются, и раствор становится щёлочным значительно ранее достижения эквивалентной точки. Известные методы определения кислоты борной основаны большей частью на том, что она реагирует с многоатомными спиртами, образуя более сильные комплексные кислоты, которые можно точно титровать, используя индикатор фенолфталеин. Для этой цели было предложено добавлять нейтральный глицерин. Кроме глицерина, можно применять и другие многоатомные спирты, например, манит.

<u>Цель работы:</u> провести идентификацию и количественный анализ кислоты борной, используя возможности цифровой лаборатории.

Форма работы: фронтальная (демонстрационный опыт), работа в группах

<u>Оборудование и реактивы:</u> 2 М раствор хлороводородной кислоты, кислота борная, глицерин, фенолфталеин, 0,1 М раствор гидроксида натрия; колба для титрования, магнитная мешалка, датчик рН.

Настройка параметров измерения:

- 1) частота измерений каждую секунду;
- 2) число замеров 500

Ход опыта: Количественное определение борной кислоты

Массу навески борной кислоты в 0,05 г перенесите в колбу для титрования, растворите при небольшом нагревании в 20 мл воды, охладите, добавьте 5 мл глицерина, 5 капель фенолфталеина. Опустите в стакан датчик рН и начинайте регистрацию данных при одновременном добавлении 0,1 М раствора гидроксида натрия до рН 8,2. Опыт повторите 3 раза.

Примечание:

- навеску можно растворять или в горячей воде, или при слабом нагревании;
- перед добавлением фенолфталеина и глицерина раствор обязательно охладить (под струёй холодной воды);
 - титровать медленно по каплям и обязательно на белом фоне.

Определение содержания кислоты борной в процентах

Содержание кислоты борной в процентах (X) вычислите по формуле:

$$X = V \cdot K \cdot T \cdot 100 / a = V \cdot K \cdot 0,00618 \cdot 100 / 0,05,$$

где V — объём 0,1 М раствора гидроксида натрия, мл; К — поправочный коэффициент; Т — 0,00618 г/мл; а — масса навески борной кислоты, взятая для определения, г. По требованиям ГФ X содержание H_3BO_3 должно быть не менее 99.5%.

Выполнив работу, напишите уравнения реакций количественного определения, сделайте вывод, что анализировалась действительно борная кислота.

Сравните процентное содержание исследуемой кислоты борной с требованиями $\Gamma\Phi$ X. Сделайте заключение можно ли готовить из неё лекарственные формы.

Опыт №2. Анализ кислоты ацетилсалициловой

<u>Цель работы:</u> провести идентификацию и количественный анализ ацетилсалициловой кислоты, используя возможности цифровой лаборатории.

Форма работы: фронтальная (демонстрационный опыт), работа в группах

<u>Оборудование и реактивы:</u> препарат ацетилсалициловой кислоты, вода, раствор гидроксида калия, серная кислота, спирт, раствор фенолфталеина, 0,1 н. раствор гидроксида натрия; колба для титрования, датчик рН.

Настройка параметров измерения:

- 1) частота измерений каждую секунду;
- 2) число замеров 500

Реакция №1. Идентификация кислоты ацетилсалициловой

Около 0,1 г препарата растворите в 5 мл раствора гидроксида калия, кипятите в течение 3 мин., после охлаждения подкислите серной кислотой; выпадает белый кристаллический осадок и ощущается запах уксусной кислоты.

Реакция №2. Анализ кислоты ацетилсалициловой

Массу препарата в 0,05 г поместите в колбу для титрования и растворите навеску в 3 мл спирта, добавьте 5 мл воды, 3 капли индикатора фенолфталеина. Опустите в химический стакан датчик рН и начинайте регистрацию данных,

одновременно прибавляя 0,1 н. раствор гидроксида натрия до рН 8,2 (появления розового окрашивания). Опыт повторите 3 раза.

Определение содержания кислоты ацетилсалициловой в процентах.

Содержание кислоты ацетилсалициловой в процентах (X) вычислите по формуле: $\mathbf{X} = \mathbf{V} \cdot \mathbf{K} \cdot \mathbf{T} \cdot \mathbf{100} / \mathbf{a} = \mathbf{V} \cdot \mathbf{K} \cdot \mathbf{0.018} \cdot \mathbf{100} / \mathbf{0.05}$,

где V — объём 0,1н раствора гидроксида натрия, мл; K — поправочный коэффициент; T- 0,018г/мл; a — масса навески ацетилсалициловой кислоты, взятая для определения, r.

По требованиям $\Gamma\Phi$ X содержание кислоты ацетилсалициловой должно быть не менее 99,5%.

Сравните процентное содержание исследуемой кислоты ацетилсалициловой с требованиями $\Gamma\Phi$ X. Сделайте заключение можно ли готовить из неё лекарственные формы.

Опыт №3. Анализ кислоты аскорбиновой

Кислота аскорбиновая — витамин C ($C_6H_8O_6$). Белый кристаллический порошок кислого вкуса; легко растворим в воде, спирте, нерастворим в эфире, бензоле и хлороформе.

<u>Цель работы:</u> провести идентификацию и количественный анализ аскорбиновой кислоты, используя возможности цифровой лаборатории.

Форма работы: фронтальная (демонстрационный опыт), групповая работа

<u>Оборудование и реактивы:</u> препарат аскорбиновой кислоты, вода, раствор фенолфталеина, 0,1 н. раствор гидроксида натрия; колба для титрования, датчик рН.

Настройка параметров измерения:

- 1) частота измерений каждую секунду;
- 2) число замеров 500

<u>Ход работы:</u> Около 0,3 г препарата помещают в колбу для титрования и растворяют в 25 мл воды, опускают датчик рН и титруют 0,1 н. раствором натрия гидроксида до рН 8,2 (появления розового окрашивания). Опыт повторяют 3 раза.

Химия и экология

Опыт № 1. Анализ почвы

<u>Цель работы:</u> Определить характер среды (кислая, щелочная, нейтральная) различных видов почв и сделать вывод об их пригодности для выращивания различных с/х растений.

<u>Форма работы:</u> фронтальная (демонстрационный эксперимент), работа в группах.

<u>Оборудование и реактивы:</u> лабораторный штатив с муфтой и кольцом, воронка, фильтровальная бумага, пробирка, стеклянная палочка, 2 химических стакана, датчик рН, цифровая лаборатория.

Настройка параметров измерения:

- 1) частота измерений каждую секунду;
- 2) число замеров 500

Прилейте дистиллированную воду, объём которой должен быть в 3 раза больше объёма почвы. Хорошенько перемешайте стеклянной палочкой.

Приготовьте лабораторный штатива. Наденьте муфту на стержень штатива так, чтобы винт, закрепляющий её, был справа от стержня штатива. Закрепите в муфту кольцо так, чтобы стержень кольца поддерживал не только винт, но и муфта. Поместите в кольцо воронку.

Приготовьте бумажный фильтр. Смочите фильтр водой, чтобы он плотнее прилегал к стенкам воронки и чтобы сухой фильтр не впитывал фильтруемую жидкость. При фильтровании жидкость наливайте на фильтр по палочке тонкой струёй, направляя её на стенку воронки, а не на непрочный центр фильтра, чтобы его не разорвать. Подставьте под воронку химический стакан и профильтруйте

подготовленную смесь почвы и воды. Почва останется на фильтре, а собранный в пробирке фильтрат представляет собой почвенную вытяжку (почвенный раствор).

В почвенную вытяжку поместите датчик рН и начинайте регистрацию данных. Эксперимент проделайте не менее 3-х раз.

<u>Результаты измерений:</u> занесите полученные данные в таблицу 5 «Кислотность почв» и сделайте вывод об их пригодности для выращивания различных с/х растений.

Таблица 5 - Кислотность почв

Образец почвы	рН
Образец почвы № 1	
Образец почвы № 2	
Образец почвы № 3	

Опыт 2. Коррозия металлов

<u>Цель работы:</u> изучить влияние продуктов коррозии на развитие водных растений, используя при этом возможности цифровой лаборатории (насадка рН-метр).

Форма работы: фронтальная (демонстрационный эксперимент).

<u>Опыт 1. Влияние продуктов коррозии металлов на развитие водных</u> растений

Опыт закладывают за 4 дня до занятия (можно на предыдущем). Значения рН регистрируют в одно и тоже время один раз в день. Полученные по водородному показателю данные представляют учащимся в виде графика. А сами опытные образцы демонстрируют на занятии.

<u>Реактивы и оборудование:</u> вода, железный гвоздь, кусочек меди (цинка, олова), водоросли; 3 химических стакана.

<u>Ход работы:</u> Три химических стакана вместимостью 100 мл наполняют водой и помещают в них водоросли. Во 2-й стакан опускают гвоздь, в 3-й — гвоздь и кусочек меди (цинка, олова), а 1-й стакан оставляют в качестве контрольного. В течение 4 дней делают контрольные замеры pH воды во всех стаканах, проводят обнаружение ионов металлов (Fe^{2+} , Fe^{3+} , Zn^{2+} , Cu^{2+} , Sn^{2+}).

Наблюдения:

Через 5 дней можно наблюдать резкое изменение рН воды во 2-м и 3-м стаканах по сравнению с контрольным, а также внешнего вида растений: они буреют, сильно ослизняются, отмирает корневая система.

<u>Ход опыта:</u> Четыре химических стакана вместимостью 50 мл наполняют водой и:

В стакан № 1: помещают водоросли – контрольный образец

В стакан №2: помещают водоросли и железный гвоздь

В стакан № 3: помещают водоросли и железный гвоздь, с медной проволокой

В стакан № 4: помещают водоросли и железный гвоздь, с цинковой стружкой

- В течение 4 дней делают контрольные замеры рН воды во всех стаканах
- Значения рН регистрируют в одно и тоже время один раз в день.
- Полученные по водородному показателю данные представляются учащимся в виде графика.
 - Сами опытные образцы растений демонстрируют на последнем элективе.

Теоретическое обоснование процесса

Коррозия — это самопроизвольное разрушение металлических материалов, происходящее под химическим воздействием окружающей среды.

В результате электрохимической коррозии окисление металла может приводить как к образованию нерастворимых продуктов (например ржавчины), так и к переходу металла в раствор в виде иона. Ржавчина представляет собой гидратированный оксид железа — Fe_2O_3 · xH_2O . Ржавление протекает под

воздействием воды и кислорода. Это электрохимический процесс, при котором одни частицы железа играют роль катода, а другие – анода.

Важнейшими окислителями, вызывающими электрохимическую коррозию являются кислород и ионы водорода.

$$O_2 + 2H^+ + 4e = 2H_2O$$

$$2H^{+} + 2e = H_{2}$$

Образец в стакане № 2:

В анодной области:

$$Fe_{(TB)} - 2e \rightarrow Fe^{2+}_{(BOДH)}$$

В катодной области:

$$O_{2(BOJH)} + 2H_2O_{(K)} + 4e \rightarrow 4OH_{(BOJH)}$$

При контакте катодной и анодной областей происходит осаждение $Fe(OH)_2$. Воздух окисляет его и образуется ржавчина:

$$Fe(OH)_{2(TB.)} + 0.5O_2 + H_2O \rightarrow Fe_2O_3 \cdot xH_2O$$

<u>Образец в стакане № 3 (катодное покрытие):</u> металл включения (Cu) имеет больший потенциал, чем основной металл (Fe)

В анодной области:

$$Fe_{(\text{тв})} - 2e \rightarrow Fe^{2+}_{(\text{водн})}$$

В катодной области:

$$2H^+ + 2e \rightarrow H_2$$

$$O_{2(BOJH)} + 2H_2O_{(ж.)} + 4e \rightarrow 4OH^{-}_{(BOJH)}$$

При контакте катодной и анодной областей происходит осаждение $Fe(OH)_2$. Воздух окисляет его и образуется ржавчина:

$$Fe(OH)_{2(TB.)} + 0.5O_2 + H_2O \rightarrow Fe_2O_3 \cdot xH_2O$$

Поток электронов от железа направляется к меди и разряжает ионы водорода, а железо разрушается быстрее, чем без меди.

Образец в стакане № 4 (анодное покрытие): металл включения (Zn) имеет меньший потенциал, чем основной металл (Fe)

В анодной области:

$$Zn_{\scriptscriptstyle (TB)} - 2e \rightarrow Zn^{^{2+}}_{\scriptscriptstyle (BOДH)}$$

В катодной области:

$$2H^+ + 2e \rightarrow H_2$$

$$2H_2 + O_{2(BOJH)} \rightarrow 2 H_2O$$

$$O_{2(BOJH)} + 2H_2O_{(K)} + 4e \rightarrow 4OH_{(BOJH)}$$

При контакте катодной и анодной областей происходит осаждение $Zn(OH)_2$ (осадок белого цвета)

Значения электродных потенциалов металлов подтверждают предложенное выше объяснение процесса:

$$Fe^{3+} + 3e = Fe, E^0 = -0.036 B$$

$$Cu^{2+} + 2e = Cu, E^0 = 0,337 B$$

$$Zn^{2+} + 2e = Zn, E^0 = -0.763 B$$

Таким образом, медь будет увеличивать скорость электрохимической коррозии. Это подтверждают результаты эксперимента, а именно в 3-м стакане изменение значения рН более интенсивно по сравнению с 4-м стаканом.

Опыт № 3. Определение pH (водородного показателя) питьевой неминерализованной воды, минеральной воды, газированных окрашенных напитков

Активная реакция среды, является одним из параметров качества питьевой воды, наряду с такими характеристиками как температура, мутность, цветность, запах и привкус, прозрачность, общая жёсткость, содержание ионов, окисляемость.

На величину рН воды влияет содержание карбонатов, гидроокисей, солей, подверженных гидролизу, гуминовых веществ и т. п. Данный показатель является индикатором загрязнения открытых водоемов при выпуске в них кислых или щелочных сточных вод, а также питьевой воды. В результате происходящих в воде химических и биологических процессов и потерь углекислоты рН воды открытых водоемов может быстро изменяться, и этот показатель следует определять сразу же после отбора пробы, желательно на месте отбора. Измерение рН цветных растворов и суспензий индикаторным способом невозможно.

<u>Цель работы:</u> Определить характер среды (кислая, щелочная, нейтральная) различных пробы воды (хозяйственно-питьевая вода, вода из водоёма, вода из родника) и напитков (Кока-кола, Фанта) и сделать вывод об их пригодности для потребления в качестве питьевой воды.

<u>Форма работы:</u> фронтальная (демонстрационный эксперимент), работа в группах.

<u>Оборудование и реактивы:</u> пробы воды и напитков (хозяйственно-питьевая вода, вода из водоёма, вода из родника, Кока-кола, Фанта); химические стаканы, лабораторный штатив, датчик рН, цифровая лаборатория «Архимед».

Настройка параметров измерения:

- 1) частота измерений каждую секунду;
- 2) число замеров 50

<u>Ход работы</u>: каждую из предложенных для анализа вод прилить в химический стакан. Погрузить датчик рН, начать измерение.

<u>Результаты работы:</u> представить полученные результаты в форме таблицы (Таблица 6)

Таблица 6 - Активная реакция среды рН проб воды и напитков

Пробы воды и	Объём	пробы	Активная		Среднее
напитков	воды		реакция	среды,	значение рН
	и напитк	СОВ	рН		
Хозяйственно-г	іитьевая в	ода			
Проба 1					
Проба 2					
Проба 3					
Вода из водоём	a		I		I
Проба 1					
Проба 2					
Проба 3					
Вода из родник	a				
Проба 1					
Проба 2					
Проба 3					
«Кока-кола»	I				
Проба 1					
Проба 2					
Проба 3					

«Фанта»		
Проба 1		
Проба 2		
Проба 3		

Сделайте вывод о пригодности исследуемых вод по показателю рH, если согласно требованиям ГОСТ активная реакция (рH) питьевой воды должна составлять 6,5-9,5.

Полезные источники

- 1. Архимед 2004. Первый шаг (http://www.9151394. ru/projects/arhimed/arhkonkurs_040315/pobediteli.html).
- Беспалько, В. П. Персонифицированное образование / В. П. Беспалько // Педагогика. – №2. – 1998. – С. 17.
- 3. Бондарев А.С., Дмитриева Н.В., Терехин М.Б. Цифровые лаборатории «Архимед» в обучении биологии (http://sputnik.mto.ru/Docs_35/Kongress/6.html).
- 4. Габриелян О.С. Химия. 8-9 класс: Методическое пособие. М., Дрофа, 1999-2001. – 128c.
- Габриелян О.С., Остроумов Г. Химия 9 класс: Настольная книга учителя. М.: Дрофа, 2003. – 400с.
- 6. О.С. Габриелян. Химия. 8 кл.: тетрадь для лабораторных опытов и практических работ к учебнику О.С. Габриеляна « Химия. 8 класс» / О.С. Габриелян, А.В. Яшукова. 3-е изд., стереотип. М.: Дрофа, 2008. 96 с.
- 7. Габриелян О.С. и др. Химия. 9 класс: Учебник для общеобразовательных учреждений. М.: Дрофа, 2003. 224с.
- 8. Программа курса химии для 8-11 классов общеобразовательных учреждений / В.В. Ерёмин, Н.Е. Кузьменко, В.В. Лунин, А.А. Дроздов, В.И. Теренин / Москва, «Дрофа», 2009.
- 9. В.В. Ерёмин, Н.Е.Кузьменко, В.В.Лунин, А.А.Дроздов Химия 10,11 класс. Профильный уровень/ М.:Дрофа, 2009,2010
- 10.Дунин С.М., Федорова Ю.В. «Живая физика» плюс цифровая лаборатория «Архимед» (материалы Педагогического марафона 2005) // Физика. Приложение к газете «Первое сентября». 2005. № 11.
- 11.Закурдаева С.Ю. Цифровая лаборатория «Архимед». Исследовательская деятельность учащегося (материалы Педагогического марафона 2004) // Физика. Приложение к газете «Первое сентября». 2004. № 22, Новые технологии в образовании / Семинар в Центре информационных технологий и учебного оборудования (http://pedsovet.edu.ru/nfpk_web/start.htm)

- 12.Intel[®] "Обучение для будущего" (при поддержке Microsoft[®]) М.: «Русская редакция», 2005. 368c.
- 13. Каталог образовательных средств и решений. Школьные лаборатории. Цифровая лаборатория «Архимед» / Институт новых технологий (http://www.int-edu.ru/arhimed/).
- 14.Мелентьева Г.А., Антонова Л.А. Фармацевтическая химия. М.: Медицина, $1985.-480~\mathrm{c}.$
- 15.Морозов М.Н., Танаков А.И., Герасимов А.В., Быстров Д.А., Цвирко В.Э., Дорофеев М.В. Разработка виртуальной химической лаборатории для школьного образования. Educational Technology & Society, 2004, №3 С. 155 –164.
- 16.Новые технологии в образовании / Семинар в Центре информационных технологий и учебного оборудования (http://pedsovet.edu.ru/nfpk_web/start.htm).
- 17. Роева Н. Н., Клячко Ю. А, Кирничная В. К. Методы исследования свойств сырья и продуктов питания. Лабораторный практикум для студентов технологических специальностей. М.: 2000. С. 24 26.
- 18. Федорова Ю.В., Трактуева С.А., Шапиро М.А., Панфилова А.Ю. Цифровые лаборатории «Архимед» // Информационные технологии в образовании-2003. Сборник трудов конференции (http://www.bitpro.ru/ito/2003/II/1/II-1-2863.html; http://www.ito.su/2003/tezis/II-1-2863-Ustniy.html
- 19. Цифровая лаборатория « Архимед». Методические материалы. Институт новых технологий. М.: 2007. 375 с.
- 20. Штремплер Г.И. Химия на досуге: Домашняя хим. лаб.: Кн. для учащихся. М.: Просвещение: « Учеб. лит.», 1996. 94 с.